

Understanding Ducted Systems

AMCA & O'Dell Associates Education Series | Session 7 | December 16, 2021

Lisa Cherney

Education Manager, AMCA International *Webinar Moderator*

- Joined AMCA in February 2019
- Responsible for development of AMCA's education programs; staff liaison for the Education & Training Committee
- Projects include webinars, AMCA's online learning platform programming, presentations at trade shows, PDH/RCEP account management, and AMCA's Speakers Network

Introductions & Guidelines

- Participation Guidelines:
 - Audience will be muted during the session.
 - Questions can be submitted anytime via the Airmeet platform and will be addressed at the end of the presentation.
 - Reminder: This session is being recorded!
 - To earn PDH credit for today, please stay clicked onto the platform for the entire hour.
 - A post-program survey will be emailed to everyone within one hour of the conclusion. Your feedback is greatly appreciated, and the survey <u>must</u> be completed to qualify for today's PDH credit.

Q & A

To submit questions:

- From the interactive panel on the right side of the screen, select the "Q&A" option at the top.
 - Type your question in the box and click "Send".
 - Remember: All attendees can see all questions submitted.
 - If you would like to verbally ask your question, please click the "Raised Hand" icon at the bottom of your screen.
 - Questions will be answered at the end of the program.

AMCA International has met the standards and requirements of the Registered Continuing Education Program. Credit earned on completion of this program will be reported to RCEP at RCEP.net. A certificate of completion will be issued to each participant. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the RCEP.

Attendance for the entire presentation AND a completed evaluation are required for PDH credit to be issued.

DISCLAIMER

The information contained in this webinar is provided by AMCA International as an educational service and is not intended to serve as professional engineering and/or manufacturing advice. The views and/or opinions expressed in this educational activity are those of the speaker(s) and do not necessarily represent the views of AMCA International. In making this educational activity available to its members and others, AMCA International is not endorsing, sponsoring or recommending a particular company, product or application. Under no circumstances, including negligence, shall AMCA International be liable for any damages arising out of a party's reliance upon or use of the content contained in this webinar.

COPYRIGHT MATERIALS

This educational activity is protected by U.S. and International copyright laws. Reproduction, distribution, display and use of the educational activity without written permission of the presenter is prohibited.

© AMCA International 2021

Pat Brooks

Senior Project Manager, SMACNA

- Over 35 years experience in HVAC ductwork design and manufacturing
- Bachelor's & master's degrees in mechanical engineering, and masters' degree in business
- Member of ASHRAE and SPIDA technical committees on duct design; recently named ASHRAE Distinguished Lecturer

Understanding Ducted Systems Purpose and Learning Objectives

The purpose of this presentation is to teach the fundamentals of supply duct design & pressure losses.

At the end of this presentation you will be able to:

- 1. Describe friction and dynamic losses, and fitting selections.
- 2. Identify the various duct shapes and how to convert duct shapes.
- 3. Calculate initial duct size.
- 4. Explain duct system layout, use of loss coefficients & friction calculations.

Duct System Design Guide

Goals of a High-Performance Air System

- Design energy efficient HVAC systems that deliver the proper amount of air to specific areas of the building
- Design balanced systems
- Minimize fan energy use
- Minimize first cost
- Minimize the maintenance cost
- Keep noise levels within the required NC/RC levels
- Provide a comprehensive design to the owner per the Owner's Project Requirements (OPRS)

Cross-sectional Areas

Round:
$$A_d = \frac{\pi D^2}{4}$$

Flat Oval:
$$A_d = (\frac{\pi a^2}{4}) + a (A-a)$$

Rectangular : $A_d = WH$

Basic Equations $Velocity V = Q \rightarrow A_d = Q$ $A_d = V$

If Q (cfm[L/s]) and A (ft^2 [m^2]) are known, the duct velocity, V (fpm, m/s) can be calculated.

Example 1: If the volume flow rate in a 22 in. (560 mm) duct is, Q = 5000 cfm (2360 L/s), what is the average velocity of air in the duct?

D = 22 inch (1.83 ft) [560 mm]

$$A_d = \frac{\pi(D)^2}{4}$$

 $A_d = \frac{\pi(1.83)^2}{4} = 2.64 \text{ ft}^2 (.25 \text{ m}^2)$
 $V = 5000 / 2.64 = 1894 \text{ fpm } [(2360/.25/1000) = 9.6 \text{ m/s}]$

Basic Equations

Velocity
$$V = \underline{Q} \rightarrow A_d = \underline{Q}$$

 $A_d \qquad V$

Example 2: If the design volume flow rate is 13,000 cfm (6135 L/s) and the velocity is 4000 fpm (20.3 m/s), what is the H dimension in a rectangular duct if the W dimension is 14 inches (355 mm)?

 $A_d = Q / V = 13,000 / 4000 = 3.25 \text{ ft}^2$ (Multiply by 144 to get in²) = 468 in² [$A_d = Q / V = 6135 / 20.3/1000 = 0.30 \text{ m}^2$]

 $A_d = WH \rightarrow H = A_d / W$

H = 468 / 14 = 33.4 inches [H = $.30 \times 1000^2 / 355 = 845$ mm]

Basic Equations – Diverging Flow

According to the law of conservation of mass, the volume flow rate before flow divergence is equal to the sum of the flows after divergence.

$$Q_c = Q_b + Q_s$$

Where:

 Q_c = common (upstream) volume flow rate, cfm (L/s)

 Q_b = branch volume flow rate, cfm (L/s)

 Q_s = straight-through volume flow rate, cfm (L/s)

Basic Equations - Pressure

 $p_t = p_s + p_v$

Pitot-static tube

Total Pressure

- Total pressure (pt) represents the total energy of the air flowing in a duct system.
- Energy cannot be created or increased except by adding work or heat (typically at the fan).
- Energy and thus total pressure must always decrease once the air leaves the fan.
- Total pressure losses represent the irreversible conversion of static and kinetic energy to internal energy in the form of heat.
- These losses are classified as either friction losses or dynamic losses.

Static Pressure

- Static Pressure is a measure of the static energy of air flowing
- Air which fills a balloon is a good example of static pressure
- Equally exerted in all directions
- The atmospheric pressure of air is a static pressure = 14.696 psi at sea level. One psi ~ 27.7 in. of water, 1 atm~ 407 in. of water [101.325 kPa]
- Static pressure will decrease with an increase of velocity pressure
- Static pressure can increase if there is a decrease in velocity pressure (static regain)

Velocity Pressure

- Velocity pressure (pv) is always a positive number in the direction of flow
- Will increase if duct cross-sectional area decreases
- Will decrease if duct cross-sectional area increases
- When velocity pressure increases, static pressure must decrease
- When velocity pressure decreases, there can be a gain in static pressure, commonly called **STATIC REGAIN**

Velocity Pressure

I-P
$$\boldsymbol{p}_{v} = \boldsymbol{\rho} \left(\frac{V}{1097} \right)^{2}$$

Where:

 p_v = velocity pressure, in. of water (Pa)

V = velocity, ft/min (m/s)

 ρ = density, Ib_m/ft³ (Kg/m³)

si $p_v = \rho V^2/2$

For standard conditions, $\rho = 0.075 \text{ lb}_{\text{m}}/\text{ft}^3$ (1.204 kg/m³)

Pressure – Changes in Pressure

 $\Delta p_t = \Delta p_s + \Delta p_v$

Derived from the Bernoulli Equation

$$p_{s1} + \frac{\rho_1 V_1^2}{2g_c} + \frac{g}{g_c} \rho_1 z_1 = p_{s2} + \frac{\rho_2 V_2^2}{2g_c} + \frac{g}{g_c} \rho_2 z_2 + \Delta p_{t,1-2}$$

(ASHRAE 2017 Handbook, Chapter 21)

Pressure – Changes in Pressure

Pressure Losses

Friction Losses

Dynamic Losses

Darcy-Weisbach Equation (ASHRAE 2017 Handbook, Chapter 21)

$$\Delta p_t = \left(\frac{f L}{D_h} p_v\right) + \sum(C) * p_v$$

Where:

f = friction factor

L = Length, ft (m)

 D_h = hydraulic diameter, ft (m)

pv = velocity pressure, in. (Pa)

C = loss coefficient

Left hand side is the Darcy Equation for the friction losses.

Right Hand Side is the Weisbach Equation for fittings or other dynamic losses.

The ASHRAE Duct Fitting Database Determines Friction Losses and Fitting Losses and Coefficients and includes over 200 types of fittings.

Pressure Losses

Friction – Colebrook Equation

$$\frac{1}{\sqrt{f}} = -2 \log\left(\frac{\varepsilon}{3.7 Dh} + \frac{2.51}{Re\sqrt{f}}\right)$$

The Colebrook equation was developed to calculate the friction factor, f; requires you to also know the Reynolds Number, Re and the absolute roughness, ε (*ft[mm]*), which is determined experimentally.

(From ASHRAE 2021 Handbook)

1	2	3	
	Absolute Roughness ε, ft {mm}		
Duct Type/Material	Range	Roughness Category	
Drawn tubing (Madison and Elliot 1946)	0.0000015 {0.00046}	Smooth 0.0000015 {0.0004	
PVC plastic pipe (Swim 1982)	0.00003 to 0.00015 {0.009 to 0.046}	Medium smooth 0.00015 {0.046}	
Commercial steel or wrought iron (Moody 1944)	0.00015 {0.046}		
Aluminum, round, longitudinal seams, crimped slip joints, 3 ft {0.91 m} spacing (Hutchinson 1953)	0.00012 to 0.0002 {0.037 to 0.061}		
Friction chart:			
Galvanized steel, round, longitudinal seams, variable joints (Vanstone, drawband, welded. Primarily beaded coupling), 4 ft {1.22 m} joint spacing (Griggs et al. 1987)	0.00016 to 0.00032 {0.049 to 0.098}	Average 0.0003 {0.09}	
Galvanized steel, spiral seams, 10 ft {3.05 m} joint spacing (Jones 1979)	0.0002 to 0.0004 {0.061 to $0.12\}$		
Galvanized steel, spiral seam with 1, 2, and 3 ribs, beaded couplings, 12 ft {3.66 m} joint spacing (Griggs et al. 1987)	0.00029 to 0.00038 {0.088 to 0.116}		
Galvanized steel, rectangular, various type joints (Vanstone, drawband, welded. Beaded coupling), 4 ft {1.22 m} spacing ^a (Griggs and Khodabakhsh- Sharifabad 1992)	0.00027 to 0.0005 {0.082 to 0.15}		
Phenolic duct, aluminum foil on the interior face, sections connected with a four-bolt flange and cleat joint (Idem and Paruchuri 2018) 5 ft {1.52 m} spacing: 10 ft {3.05 m} spacing:	0.00049 to 0.00128 {0.149 to 0.391}		
	0.00025 to 0.00098 {0.075 to 0.298}		
Wright Friction Chart:			
Galvanized steel, round, longitudinal seams, 2.5 ft {0.76 m} joint spacing, ϵ = 0.0005 ft {0.15 mm}	Retained for historical purpos development of f	es [See Wright (1945) for riction chart]	
Flexible duct, nonmetallic and wire, fully extended (Abushakra et al. 2004; Culp 2011)	0.0003 to 0.003 {0.09 to 0.9}	Medium rough 0.003 {0.9}	
Galvanized steel, spiral, corrugated, ^b Beaded slip couplings, 10 ft {3.05 m} spacing (Kulkarni et al. 2009)	0.0018 to 0.0030 {0.54 to 0.91}		
Fibrous glass duct, rigid (tentative) ^c	_		
Fibrous glass duct liner, air side with facing material (Swim 1978)	0.005 {1.52}		
Fibrous glass duct liner, air side spray coated (Swim 1978)	0.015 {4.57}	Rough 0.01 {3.0}	
Flexible duct, metallic corrugated, fully extended	0.004 to 0.007 {1.2 to 2.1}		
Concrete (Moody 1944)	0.001 to 0.01 {0.30 to 3.0}		

duct construction (cross breaks, etc.), and that the e-value range listed is representative. ^bSpiral seam spacing was 4.65 in. {119 mm} with two corrugations between seams. Corrugations were 0.75 in. {19 mm} wide by 0.23 in. {6 mm} high (semicircle).

"Subject duct classified "tentatively medium rough" because no data available.

amca INTERNATIONAL

Pressure Losses

Dynamic

The right-hand side of the Darcy-Weisbach Equation is the Weisbach Equation

 $p_{t,fittings} = \sum (C) * p_v$

Pressure Losses

Dynamic -How Loss Coefficients are Determined

$$\Delta p_{t,fitting} = C * pv_{,} C = \frac{\Delta p_{t,fitting}}{p_{v}}$$

 $\Delta p_{t,1-2} = \Delta p_{s,7-8} + (p_{v7} - p_{v8}) - (L_{7-1}\Delta p_{f,7-1} + L_{2-8}\Delta p_{f,2-8})$

Pressure Losses

Dynamic – Loss Coefficients , ASHRAE Duct Fitting Database

$$\Delta p_{t,fitting} = C * pv_{,} C = \frac{\Delta p_{t,fitting}}{p_{v}}$$

ASHRAE Duct Fitting Database (DFDB)

- Has 232 Fittings
- Calculates Loss of Round, Rectangular and Flat Oval Duct and Fittings
- Calculates and Takes into Account Density Can Change Air Properties
- Determines Pressure Loss Base on Input Dimensions and Flow Rates
- Can Look at Complete Fitting Loss Coefficient Table Data, Print it or Export it to Excel
- Can Lookup Fittings in Table View by Filters
- Can create projects of duct/fitting pressure losses
- Results in I-P or SI

Pressure Losses

Example Using ASHRAE Duct Design Database I-P

Friction Loss, 10" Diameter, Airflow is 1000 cfm, L = 100 ft, ϵ = 0.0003 ft

CD11-1 Straight Duct, Round (Colebrook 1939)

INPUT		
Diameter (D)	in.	10
Length (L)	ft	100
<u>Absolute Roughness (ei)</u>	ft	0.0003
Flow Rate (Q)	cfm	1000
Density (RHO)	lbm/ft^3	0.075
Calculate		
OUTPUT		
Velocity (V)	fpm	1,833
Velocity Presure (Pv)	in. wg	0.21
Reynolds Number (Re)		156,017
Friction Factor (f)		0.0186
Pressure Loss (Po)	in. wg	0.47

Pressure Losses

Example Using ASHRAE Duct Design Database SI

CD11-1 Straight Duct, Round (Colebrook 1939)

Friction Loss, 254 mm Diameter, Airflow is 472 L/s, L = 30 m , ϵ = 0.09 mm

INPUT		
Diameter (D)	mm	254
Length (L)	m	30
<u>Absolute Roughness (ei)</u>	mm	.09
Flow Rate (Q)	L/s	472
Density (RHO)	kg/m^3	1.204
Calculate		
OUTPUT		
Velocity (V)	m/s	9.3
Velocity Presure (Pv)	Pa	52
Reynolds Number (Re)		156,719
Friction Factor (f)		0.0185
Pressure Loss (Po)	Ра	114.4

amca INTERNATIONAL

Pressure Losses

Example Using ASHRAE Duct Design Database I-P

Example: 10" Dia, 90° Smooth Radius Elbow, R/D = 1.5. Airflow is 1000 acfm. Elevation is 5000 ft.

CD3-1 Elbow, Die Stamped, 90 Degree, r/D = 1.5 (UMC 1985, Report SRF785)

INPUT		
Diameter (D)	in.	10
Flow Rate (Q)	cfm	1000
Density (RHO)	lbm/ft^3	0.062
Calculate		
OUTPUT		
Velocity (Vo)	fpm	1,833
Vel Pres at Vo (Pv)	in. wg	0.17
Loss Coefficient (Co)		0.11
Pressure Loss (Po)	in. wg	0.02

amca INTERNATIONAL

Pressure Losses

Example Using ASHRAE Duct Design Database S-I

Example: 250 mm Dia, 90° Smooth Radius Elbow, R/D = 1.5. Airflow is 472 L/s. Elevation is 1524 m.

CD3-1 Elbow, Die Stamped, 90 Degree, r/D = 1.5 (UMC 1985, Report SRF785)

Friction Efficiency – Roughness vs Velocity, I-P

Example: 24" x 32" Rectangular Duct, L = 100 ft, Standard Density using ASHRAE DFDB

Using ASHRAE Databse

			Standa Galvani (ε = 0.000	ard ized 05 ft)	Lined Duct, Corrugated (ε = 0.003 ft)	
	Velocity	Q = AV	∆p _f Fric	tion	Δp _f Fric	tion
Velocity	Pressure p _v	Flow Rate	Loss (I	nch	Loss (I	nch
(fpm)	(inch water)	(cfm)	wate	r)	wate	r
1000	0.06	5333		0.05		0.06
2000	0.25	10667		0.17		0.23
3000	0.56	16000		0.37		0.52
4000	1	21333		0.65		0.93

Friction Efficiency – Roughness vs Velocity SI

Example: 610 mm x 815 Rectangular Duct, L = 30 m, Standard Density

Using ASHRAE Database, SI

			Standard Galvanized (ε = 0.15)	l d	Lined Corrug (ε = 0.9	Duct, gated mm)
	Velocity	Q = AV				
Velocity	Pressure p _v	Flow Rate	Δp _f Frictio	n	∆p _f Fri	ction
(m/s)	(Pa)	(L/s)	Loss (Pa)		Loss	(Pa)
5.1	13	2516		9.5)	12.1
10.1	50	5000	3	4.5		46.7
15.2	115	7550	7	6.0		105.4
20.3	204	10070	13	2.4		186.6

Friction Efficiency – Roughness vs Velocity

Example: 24" x 32" (610 mm x 815 mm) Rectangular Duct, L = 100 ft (30 m), Standard Density using ASHRAE DFDB

Observations:

Factor of 13+!! Increase in Pressure Loss when Velocity is Increased by a Factor of 4, From 1000 to 4000 fpm (5 to 20 m/s)

✤ 0.05 in wg (9.5 Pa) increased to 0.65 in wg (132.4)

Factor of only 1.2 to 1.4 Increase in Pressure Loss When Roughness (ε) is Increased by a Factor of 10

At 1000 fpm (5 m/s), 0.05 in wg (9.5 Pa) increased to 0.06 in wg (12.1 Pa)

At 4000 fpm (20 m/s), 0.65 in wg (132.4 Pa) increased to 0.93 in wg (186.6 Pa)

Pressure Losses

Equivalent Round for Rectangular and Flat Oval Duct – Converting Duct Sizes

Rectangular, D_e = $\frac{1.30(WH)^{0.625}}{(W+H)^{0.250}}$

 $1.55 \left[\frac{\pi}{4} a^2 + a(A-a) \right]^{0.625}$ $[\pi a + 2(A - a)]^{0.250}$ Flat Oval, D_e

> D_e= Equivalent Round, in (mm) W= Rectangular Width, in (mm) H = Rectangular Height, in (mm) A = Flat Oval Major Dimensions, in (mm) a = Flat Oval Minor Dimensions, in (mm)

Pressure Losses

Equivalent Round for Rectangular and Flat Oval Duct – Converting Duct Sizes

Example: W= 14 in (355 mm), H = 24 in(600 mm) for Rectangular, a = 14 in (355 mm) and A = 24 in (600 mm) for Flat Oval. What are the Equivalent Round Dimensions

```
Solution:
Rectangular:
D_e = 1.3 \times ((14 \times 24)^{0.625}) / (14 + 24)^{0.25} = 19.9 \text{ in (I-P)}
D_e = 1.3 \times ((355 \times 600)^{0.625}) / (355 + 600)^{0.25} = 500 \text{ mm(SI)}
```

```
Flat Oval:

AR = (\pi \times 14^2 / 4 + 14 \times (24 - 14)) = 294 \text{ in}^2 (\text{I-P})

AR = (\pi \times 355^2 / 4 + 355 \times (600 - 355)) = 185954 \text{ mm}^2 (SI)

P =\pi \times 14 + 2 \times (24 - 14) = 64 \text{ in (I-P)}

P =\pi \times 355 + 2 \times (600 - 355) = 1605 \text{ mm} (SI)
```

```
D_e = 1.55 \times 294^{0.625} / 64^{0.25} = 19 in (I-P)
D_e = 1.55 \times 185955^{0.625} / 1605^{0.25} = 481 mm (SI)
```

If the round size is known, then knowing one of the rectangular or flat oval dimensions, the solution must be solved iteratively or use a chart.

amca INTERNATIONAL

Pressure Losses

Fitting Efficiency – Round Elbows, I-P

Example: Diameter = 10 inch, Standard Density using ASHRAE DFDB

From ASH	RAE DFDB	Ι		90'		90'		90.		90'				
	Valacity		Smooth Ra	dius, R/D = 1.5	Smooth Ra	adius, R/D = 1.0	5 Piece	e, R/D = 1.5	3 Piece, R/D	= 1.5 (Table	Mitered v	w Vanes	Mitered wit	hout Vanes
	Prossure	0 - 11/	Lan		Lan		Lan				Lana		1	
No.1	n (inch	Q = AV	LOSS	An linch	LOSS		LOSS		LOSS	An (inch	LOSS	An linch	LOSS	An (inch
Velocity	P _v (inch	FIOW Rate	Coefficient	Δp _t (inch	Coefficient		Coefficient		Coefficient	Δp _t (inch	Coefficient	Δp _t (inch	Coefficient	Δp _t (inch
(fpm)	water)	(cfm)	C	water)	C	Ap. (inch_water)	C	Δp. (inch_water)	C	water)	C	water)	С	water)
1000	0.06	545	0.11	0.01	0.24	0.01	0.20	0.01	0.34	0.02	0.48	0.03	1.19	0.07
2000	0.25	1090	0.11	0.03	0.24	0.06	0.20	0.05	0.34	0.09	0.48	0.12	1.19	0.30
3000	0.56	1635	0.11	0.06	0.24	0.13	0.20	0.11	0.34	0 19	0.48	0.27	1 19	0.67
4000	0.99	2175	0.11	0.11	0.24	0.24	0.20	0.20	0.34	0.34	0.48	0.48	1.19	1.18
			1	Best	E	Better	E	Better	Goo	bd	Goo	bd	BA	D

amca INTERNATIONAL

Pressure Losses

Fitting Efficiency – Round Elbows, SI

Example: Diameter = 250 mm, Standard Density using ASHRAE DFDB

From ASHF	RAE DFDB,	sı		90'		90,		90.		90.			D A _o	
			Smooth Ra	dius, R/D = 1.5	Smooth Ra	idius, R/D = 1.0	5 Piece	e, R/D = 1.5	3 Piece, R/D	= 1.5 (Table	Mitered	w Vanes	Mitered wit	hout Vanes
	Velocity	Q = AV	Loss		Loss		Loss		Loss		Loss		Loss	
Velocity	Pressure	Flow Rate	Coefficient		Coefficient		Coefficient		Coefficient		Coefficient		Coefficient	
(m/s)	p _v (Pa)	(L/s)	С	Δp _t (Pa)	С	Δp _t (Pa)	С	Δp _t (Pa)	с	∆p, (Pa)	С	∆p, (Pa)	С	∆p, (Pa)
5.2	17	257	0.11	1.87	0.24	4.08	0.20	3.40	0.34	5.78	0.48	8.16	1.19	20.23
10.5	66	514	0.11	7.26	0.24	15.84	0.20	13.20	0.34	22.44	0.48	31.68	1.19	78.54
15 7	149	771	0 11	16 39	0.24	35 76	0.20	29.80	0 34	50.66	0.48	71 52	1 19	177 31
20.9	263	1026	0.11	28.93	0.24	63.12	0.20	52.60	0.34	89.42	0.48	126.24	1.19	312.97
			E	sest	E E	setter	B	setter	GO	oa	GO	oa	ВА	U

Pressure Losses

Fitting Efficiency – Rectangular Mitered Elbows, I-P

Example: Diameter = 12-inch x 12-inch , Standard Density using ASHRAE DFDB

× ^s	From ASHRAE DFDB													
B Double Thickness		0 A ₀	ж н									0 W × H		
			Single Thi Mitered v Vanes, R=2	ickness, v Turing 2.0, S=1.5	Single Thi Mitered v Vanes, R=4.	ckness, / Turing .5, S=3.25	Double Th Mitered w Tu R=4.5, S	nickness, Iring Vanes, S=3.25	Double T Mitered w Tu R=2.0,	hickness, uring Vanes, S=1.5	Double Tl Mitered w Tu R=2.0,	nickness, Iring Vanes, S=2.25	Mitered with = !	out Vanes, Theta 90 Deg
	Velocity													
Velocity	pressure	Q = AV Flow Rate	Loss	∆p, (inch	Loss	Δp, (inch	Loss	Δp, (inch	Loss	∆p, (inch	Loss	Δp, (inch	Loss	
(fpm)	water)	(cfm)	Coefficient C	water)	Coefficient C	water)	Coefficient C	water)	Coefficient C	water)	Coefficient C	water)	Coefficient C	∆p _t (inch water)
1000	0.06	1000	0.11	0.01	0.33	0.02	0.41	0.03	0.38	0.02	0.25	0.02	1.18	0.07
1500	0.14	1500	0.11	0.02	0.33	0.05	0.41	0.06	0.38	0.05	0.25	0.04	1.18	0.17
2000	0.25	2000	0.11	0.03	0.33	0.08	0.41	0.10	0.38	0.09	0.25	0.06	1.18	0.29
2500	0.39	2500	0.11	0.04	0.33	0.13	0.41	0.16	0.38	0.15	0.25	0.10	1.18	0.46
			Be	st							Go	od		Bad

amcainternational

Pressure Losses

Fitting Efficiency – Rectangular Mitered Elbows, SI

Example: Diameter = 305 mm x 305 mm, Standard Density using ASHRAE DFDB

× ^s	ves From ASHRAE DFDB													
Single Thickness				С <u>О</u> А ₀ W x H		о А. W × H		Ao W x H		○ ∧○ ₩×H		0 W × H		
			Single Thi Mitered v Vanes, R=	ickness, v Turing 50, S=40	Single Thi Mitered v Vanes, R=1	ckness, v Turing 10, S=80	Double Tl Mitered w Tu R=110	hickness, uring Vanes, , S=80	Double Th Mitered w Tu R=50,	nickness, Iring Vanes, S=40	Double Tl Mitered w Tu R=50,	hickness, uring Vanes, S=60	Mitered with = !	out Vanes, Theta 90 Deg
	Velocity	Q = AV												
Velocity	Pressure	Flow Rate	Loss		Loss		Loss		Loss		Loss		Loss	
(m/s)	p _v (Pa)	(L/s)	Coefficient C	∆p _t (Pa)	Coefficient C	∆p _t (Pa)	Coefficient C	∆p _t (Pa)	Coefficient C	∆p _t (Pa)	Coefficient C	∆p _t (Pa)	Coefficient C	Δp _t (Pa)
5.1	15.00	472	0.11	1.65	0.33	4.95	0.41	6.15	0.38	5.70	0.25	3.75	1.18	17.70
7.6	35.00	708	0.11	3.85	0.33	11.55	0.41	14.35	0.38	13.30	0.25	8.75	1.18	41.30
10.2	62.00	945	0.11	6.82	0.33	20.46	0.41	25.42	0.38	23.56	0.25	15.50	1.18	73.16
12.79	97.00	1180	0.11	10.67	0.33	32.01	0.41	39.77	0.38	36.86	0.25	24.25	1.18	114.46
			Be	st							Go	od		Bad

Pressure Losses

Fitting Efficiency – Rectangular Mitered Elbows

SMACNA Research *HVAC Systems Duct Design – Fourth Edition* Shows:

- vanes with trailing edges have higher loss coefficients than standard construction
- removing every other vane can more than double the pressure loss
- turning vanes are 90°; if used in elbows of other angle the pressure loss will increase

FIGURE 5-14 TURBULENCE CAUSED BY IMPROPER MOUNTING AND USE OF TURNING VANES

amcainternational

Pressure Losses

Fitting Efficiency – Round Taps, I-P

amcainternational

Pressure Losses

Fitting Efficiency – Round Taps, SI

- Step 1 Determine air volume requirements. Include an allowance for leakage.
- Step 2 Locate duct runs. Avoid unnecessary directional changes.
- Step 3 Locate balancing dampers if necessary.
- Step 4 Determine the allowable noise (NC) levels.
- Step 5 Select design method.
- Step 6 Select the initial duct size.
- Step 7 Determine duct sizes based on the design methodology. Use efficient fittings.
- Step 8 Keep aspect ratios as close to 1 as possible.
- Step 9 Determine system pressure requirements. Include total pressure losses of components.

- Step 10 Determine the design leg(s) for both Supply and Return
- Step 11 Determine the required fan operating pressure
- Step 12 Analyze the design to improve balancing and reduce material cost.
- Step 13 Select fan according to proper guidelines for the operating pressure and maximum total volume flow rate
- Step 14 Analyze the design to make sure it meets the acoustical requirements.
- Step 15 Select materials that minimize cost and meet SMACNA Duct Construction Standards.
- Step 16 Analyze the life-cycle cost of the design.
- Step 17 Commission the design to make sure it meets the Owner's Project Requirements (OPRS)

Pressure Losses – The Design Leg

Critical Path

Critical paths are the duct sections from a fan outlet to the terminal device with the <u>highest total pressure drop for supply</u> <u>systems</u> or from the entrance to the fan inlet with the <u>highest</u> <u>total pressure drop for return or exhaust systems</u>.

• Selecting the Design Method

Design Method	Pros	Cons
	Easier to Use	Does not account for varying lengths, uses same friction loss rate to size 1 ft. length or 100 ft. for example.
Equal Friction	Can Use a Ductulator to Determine Sizes	Fittings don't affect the design only the analysis. The design or size is a function of the friction rate used. Fittings losses must be included in the analysis.
	Good for quickly designing small systems.	The system will not be balanced without additional work or use of dampers.
	Can design return/exhaust or supply systems.	Optimum friction rate is not known. Choosing a friction rate is from experience by rule of thumb.

Selecting the Design Method

Design Method	Pros	Cons
	Larger duct sizes may be used, but offset by smaller sizes in non-critical paths	Sizing ducts is cumbersome and may require may interations which are best suited by the use of a computerized design program
Static Regain	System will be more balanced than equal friction, depending on the available duct sizes allowed	
	Often can use smaller sizes or less efficient and lower cost tyes of fittings in the non-design legs	Can only be used on Supply Systems
		Must choose an initial velocity based on guidelines

Equal Friction Rate Design

- Size all main and branch duct at a constant friction rate per 100 ft (1 meter) including the initial section
- Calculate the total pressure loss for each section, both supply and return ductwork including all fitting losses
- If by hand, a spreadsheet will be helpful
- For each main and branch of a junction be sure to account for the straight-through and branch loss coefficients
- Tabulate the total pressure required <u>for each path</u> from the fan to the supply terminal (and return grill for return systems)
- Determine the critical path and maximum operating pressure
- Determine the excess pressure for each non-critical paths

Designing the Duct System Overview Equal Friction Rate Design

- For Total Pressure Design, balance the system with smaller duct sizes then less efficient fittings in non-design legs. (This is usually not done with equal friction designs) calculate the excess total pressure for the path to each terminal
- If excess pressure is greater than 0.1 in. of water (25 Pa), consider using a higher friction rate in non-design legs with smaller duct sizes in that area
- Perform an acoustical analysis of the system. Provide lined duct or silencers as necessary

Static Regain Design

- Determine the initial size. Use the same size as you would for the Equal Friction Rate or use the Maximum Recommended Duct Airflow Velocities to Achieve Specified Acoustic Design Criteria table
- Size the straight-through and branch sections using
- $\Delta p_{s,1-2} = p_{v1} p_{v2} \Delta p_{t,1-2} = 0$. Use the junction <u>upstream</u> velocity to determine p_{v1} . Use efficient fittings
- Size ductwork downstream of VAV terminal units by the equal friction method
- Tabulate the total pressure required for each path from the fan to the supply terminal

Duct Design –Static Regain

$\Delta p_{t,1-2} = \Delta p_{s,1-2} + \Delta p_{v,1-2}$
$\Delta p_{s,1-2} = \Delta p_{t,1-2} - \Delta p_{v,1-2}$
$\Delta p_{s,1-2} = 0$
$\Delta p_{t,1-2} = \Delta p_{v,1-2}$ Satisfid When:
$\Delta p_{v,1-2} \Delta p_{t,1-2} = 0$
$p_{v1} p_{v2} \Delta p_{t,1-2} = 0$

Static Regain Design

- Determine the critical path and maximum operating pressure
- Determine the excess pressure for each non-critical paths
- Design should be reasonably in balance, but for Total Pressure Design, adjust appropriate branches using smaller duct sizes
- If there is still excess pressure, consider using some less efficient fittings
- Unbalance of 0.1 in. of water (25 Pa) is acceptable (well within the accuracy of the fitting loss coefficients)
- Perform an acoustical analysis of the system. Provide lined duct or sound attenuators where necessary

Example

Size the system shown using Equal Friction and Static Regain. The design air temperature is 69 °F (21°C), located in Denver. Density (ρ) is 0.061 lb_m/ft³ (0.983 kg/m³), zero duct air leakage, Ducts are round spiral galvanized steel. The diffuser and distribution ductwork downstream of the VAV box has a pressure loss of 0.05 in. of water (12 Pa). The VAV terminal units have loss coefficients according to the following Table.

	VAV Te	erminal Outlet	ts
Section	Box Size,	Airflow, cfm	Loss
Section	in (mm)	(L/s)	Coefficient (C)
4 & 5	10 (249)	1000 (472)	2.58
7	9 (229)	800 (378)	2.31
9 & 10	8 (206)	600 (283)	2.49
13 & 14	14 (324)	2000 (944)	2.56
17 & 18	12 (661)	1400 (661)	2.65
20	8 (206)	600 (283)	2.49

Designing the Duct System Example

Assume the first section is in a shaft and the RC requirement is 35 maximum.

Maximum Recommended Duc	t Airflow Velocitie	es to Achieve Spec	ified Acoustic		
	Design Criteria ¹				
		Maximum Airflo	w Velocity, fpm		
	RC or NC Rating	(m/s)			
Duct Location	in Adjacent Occupancy	Rectangular Duct	Round Duct		
	45	3500 (17.8)	5000 (25.4)		
In shaft or above drywall ceiling	35	2500 (12.7)	3500 (17.8)		
	25 or less	1700 (8.6)	2500 (12.7)		
	45	2500 (12.7)	4500 (22.9)		
Above suspended acoustic ceiling	35	1750 (8.9)	3000 (15.2)		
	25 or less	1200 (6.1)	2000 (10.2)		
	45	2000 (10.2)	3900 (19.8)		
Duct located within occupied space	35	1450 (7.4)	2000 (10.2) 3900 (19.8) 2600 (13.2)		
	25 or less	950 (4.8)	1700 (8.6)		

¹Table 4-1 [Schaffer 2005 (2011)] [Table 8 from ASHRAE 2015 – HVAC Applications Chapter 48, Noise and Vibration Control]

Example: Sizing the First Section

- Sum the airflow requirements at the terminal VAV boxes. Assume no diversity or leakage
- The total fan airflow is 11,400 cfm (5381 l/s)
- Sizing the first section for the maximum velocity of 3500 (17.8 m/s) results in a diameter size of 25 inches (625 mm) off the fan transition. Use CD11-3 for initial size and friction rate
- The initial velocity in the round section is 3,334 fpm (17.5 m/s)

Designing the Duct System Example: Sizing the First Section, I-P

Example: Sizing the First Section, SI

		CD11-3 Straight Duct, Round, Maximum Velocity (Haaland 1983) [Knowing Flow Rate (Q) and Target Velocity (V), determine Diameter (D)]
INPUT		
Flow Rate (Q)	L/s	5381
Target Velocity (VT)	m/s	17.8
<u>Absolute Roughness (ei)</u>	mm	0.12
Density (RHO)	kg/m^3	0.983
Calculate Load Defaults		
OUTPUT		
Diameter (D)	mm	625
Velocity (V)	m/s	17.5
Velocity Pressure (Pv)	Pa	151
Reynolds Number (Re)		590,894
Fricton Factor (f)		0.0150
Friction Rate (Po)	Pa per m	3.63

Example: Equal Friction

- That has a friction loss rate of 0.41 inch water per 100 ft (3.63 Pa/m)
- That rate will be used to size the other sections
- Use DFDB CD11-4 to size the Duct and CD11-1 to calculate the pressure loss
- We must also account for fitting losses, so a spreadsheet is used to calculate the data for each section

Example: Equal Friction Section 11, I-P

		CD11-4 Straight Duct, Round, Friction Rate Constant [Knowing Flow Rate (Q) and Target Friction Rate, determine Diameter (
INPUT		
Flow Rate (Q)	cfm	7400
Length (L)	ft	11
Target Friction Rate (dpol)	in.wg/100 ft	.41
<u>Absolute Roughness (e)</u>	ft	.0004
Density (RHO)	lbm/ft^3	0.061
OUTPUT		
Calculated Diameter (D)	in.	21.27
Nominal Duct Diameter (Dnom)	in.	21.00
Air Velocity (V)	ft/min	3,077
Velocity Pressure (PV)	in. wg	0.483
Reynolds Number (Re)		451,548
Friction Factor (F)		0.0158
Friction Rate (DpolNom)	in. wg/100 ft	0.437
Pressure Loss (DP)	in.wg	0.048

Designing the Duct System Example: Equal Friction Section 11, SI

		CD11-4 Straight Duct, Round, Friction Rate Constant [Knowing Flow Rate (Q) and Target Friction Rate, determine Diamete	er (l
INPUT			
Flow Rate (Q)	L/s	3492	
Length (L)	m	3.4	
Target Friction Rate (dpol)	pa/m	3.63	
<u>Absolute Roughness (e)</u>	mm	0.120	
Density (RHO)	kg/m^3	0.983	
OUTPUT			
Calculated Diameter (D)	mm	531	
Nominal Duct Diameter (Dnom)	mm	531	
Air Velocity (V)	m/s	15.8	
Velocity Pressure (PV)	Pa	122	
Reynolds Number (Re)		451,354	
Friction Factor (F)		0.0158	
Friction Rate (DpolNom)	Pa/m	3.637	
Pressure Loss (DP)	Pa	12.365	

Designing the Duct System Example: Equal Friction Spreadsheet, I-P

	Sizes per CD11-4											
Equal Friction	Example Pro	oblem (DDG) I-P		Friction Rate = 0.41in wg/100 ft p	er CD11-3, V target	= 3500 fpm for	Acoustics					
Air Temperatu	ure, °F		69	Relative Humidity, %	0							
Elevation, ft			5430	Air Density, lbm/ft ³	0.061							
Barometric Pr	essures, ps	ia	12.032	Viscosity (µ), lbm/(ft-min)	0.00073245							
tream ction	ction			Fitting		Air Quantity (cfm)	Duct Size (in.)	Velocity (fpm)	Duct Length (ft)	Pressure, p _v (in.	Loss Coefficient, C	Total Pressure Loss (in. wg)
Se	Š		Source			Source		-	-	-	Source	
2				Drawings	DFDB	Drawing	DFDB	DFDB	Drawing	DFDB	DFDB	Σ
		Duct			CD11-3/CD11-1				26			0.11
		Elbow, 90°			CD3-9	11400	25	3344			0.13	
1	2	Transition: H1=2	7.0",W1=20.0'	",L=24" (Theta1=5°,Theta2=12°)	SD4-2		U				0.01	
		Sized at Maxim	num Velocity	/ of 3500 fpm						0.57	0.14	0.08
Section Total .												0.19
		Duct			CD11-1				11			0.05
_	44	Tee, 45° Entry, N	1ain		CD5 42	7400	21	3077			0.14	
2	11 (Dc=25, Ds=21, Db=17)			505-12								
										0.48	0.14	0.07
Section Total .												0.12

Example: Equal Friction Spreadsheet, SI

Sizes per CD11-4												
Equal Friction Example Problem (DDG) Friction Rate = 3.63 Pa/m per CD11-3, V target = 17.8 for Acoustics												
Air Temperatu	ıre, °C		21	Relative Humidity, %	0							
Elevation, m			1655	Air Density, kg/m³	0.983							
Barometric Pressures, Kpa 83 Viscosity (μ), Kg/m -s					1.82E-05							
tream ction	ction	Fitting			ASHRAE Fitting Code	Air Quantity (L/s)	Duct Size (mm)	Velocity (m/s)	Duct Length (m)	Velocity Pressure, p _v (Pa)	Loss Coefficient, C	Total Pressure Loss (Pa)
se S	Se		Source			Source			-	-	Source	
2				Drawings	DFDB	Drawing	DFDB	DFDB	Drawing	DFDB	DFDB	Σ
		Duct			CD11-3,CD11-1				7.9			28.1
		Elbow, 90°			5380	5380	625	17.5			0.13	
1	2	Transition: H1=6	85 mm",W1=50	08 mm,L=610 mm (Theta1=5°,Theta2=12°)	SD4-2	5555		11.5			0.01	
		Sized at Maxim	num Velocity	of 17.8 m/s			•	•		150.00	0.14	21.0
Section Total .												49.1
												\frown
		Duct			CD11-1				3.4			10.60
2	11	Tee, 45° Entry, N	lain		SD5-12	3492	533	15.8			0.14	
								122.00	0.14	17.08		
Section Total								27.68				

Example: Equal Friction Unbalance

Unbalance I-P:

		Excess	
Path to		Pressure (in.	
Terminal Box	TP (in. wg)	wg)	% Deviation
(4/5)	1.28	0.02	1.3%
(7)	1.27	0.03	2.1%
(9/10)	1.30	0.00	0.0%
(13/14)	1.26	0.04	3.1%
(17/18)	1.20	0.09	7.1%
r i			
(20)	1.15	0.14	11.1%

U	In	ba	lan	ce	S	
---	----	----	-----	----	---	--

Equal Friction									
Path to Terminal Box	TP (Pa)	Excess Pressure (Pa)	% Deviation						
(4/5)	330	39	10.6%						
(7)	314	55	15.0%						
(9/10)	322	47	12.6%						
(13/14)	369	0	0.0%						
(17/18)	348	21	5.8%						
(20)	312	57	15.6%						

Designing the Duct System Example: Static Regain

- Size the first section the same as the Equal Friction Method using the Maximum Recommended Duct AirFlow Velocities to Achieve Specified Acoustic Design Criteria table.
- Use the static regain equation for other sections:

Designing the Duct System Example: Static Regain, I-P

				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		tatic Re	gain	Spreads	heet			· · · · · · · · · · · · · · · · · · ·
Air °F	Tempera	ature,	69	Relative Humidity, %	0								
Ele	vation, ft	t -	5430	Air Density, Ibm/ft ³	0.061								
Bai Pre	rometric ssures, p	psia	12.03 2	Viscosity (µ), lbm/(ft- min)	0.00073245	:				:	: 		
Section	uoi		Fittin	g	ASHRAE Fitting Code	Air Quantity (cfm)	Duct Size (in.)	Velo city (fpm)	Duct Length (ft)	Velocity Pressur e, py (in.	Loss Coefficient, C	Total Pressur e Loss (in. wa)	Regain (In. wg)
ream	Sect			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					wg)	· · · · · · · · · · · · · · · · · · ·	- (nrwg)-	[[Pi] - Pi2] Pi
lpst				•	:	Source		1		:	•	:	: :
			Drawir	ngs	DFDB	Drawings	Iteration	DFD B	Drwing	DFDB	DFDB	Σ	Static Regain Calc
:		Duct		:	CD11-1	:			26	:		0.11	
		Elbow		· · · · · · · · · · · · · · · · · · ·	CD3-9	11400	· · · 25· · ·	3334		· · · · · · · · · · · · · · · · · · ·	0.13		
1	2*	Transiti L=24" (on: H1= 20 Theta1=17	", W1= 27", º, Theta2=0º)	SD4-2	· · ·					0.01	:	
	Sized at Maximum Velocity of 3500 fpm 0.57 0.14 0.08												
Section Total													

Designing the Duct System Example: Static Regain, SI

Example Static Regain Spreadsheet SI

Air Temperatur	re, ℃		21 Relative Humidity, %	0								
Elevation, m			1655 Air Density, kg/m ³	0.983								
Barometric Pressures, Kpa		83 <mark>Viscosity</mark> (μ), Kg/m -s	1.82E-05									
									Velocity		Total	Regain (Pa)
stream	ction		Fitting	ASHRAE Fitting Code	Air Quantity (L/s)	Duct Size (mm)	Velocity (m/s)	Duct Length (m)	Pressure, p _v (Pa)	Loss Coefficient, C	Pressure Loss (Pa)	$[p_{v1} - p_{v2}] - \Delta p_t$
Se	Se	Source	Source						Source			Source
			Drawings	DFDB	Drawings	Iteration	DFDB	Drawings	DFDB	DFDB	Σ	Static Regain Calculation
		Duct		CD11-1				7.9			28.1	
	*	Elbow		CD3-9	5360	625	17.5			0.13		
1 1										0.04		
	2			SD4-2						0.01		
	2	Sized at Ma	ximum Velocity of 3500 fpm	SD4-2					150.00	0.14	21.00	
Section Total	2	Sized at Ma	ximum Velocity of 3500 fpm	SD4-2	I				150.00	0.14	21.00 49.10	

Example: Static Regain, I-P

	sam Section	Section	Fitting	ASHRAE Fitting Code	Air Quantity (cfm)	Duct Size (in.)	Velo city (fpm)	Duct Length (ft)	Velocity Pressur e, py (in. wg)	Loss Coefficient, C	Total Pressur e Loss (inwg)	Regain (In. wg) [p _{vf} p _{v2}]~∆p _t
	pstre	‴ : [Source	-						
]		Drawings	DFDB	Drawings	Iteration	DFD B	Drwing	DFDB	DFDB	Σ	Static Regain Calc
Г		-										
	Λ		Duct	CD11-1				11			0.04	
T	2		Tee, 45° Entry, Main:	SD5 12	7400	22	2803			0.14		
	2 .1d*		Dc=25, Ds=22, Db=22	305-12						0.14		
V		Ν			4rth i	teration		-	0.40	0.14	0.06	(0.57-0.40)-0.10
	Sec	tion Tot	al								0.10	0.07
			Duct	CD11-1				11			0.04	
	•		Tee, 45° Entry, Main:	055.40	7400	21	3077					
	2	11e	Dc=25, Ds=21, Db=21	SD5-12						0.14		
				•	5th it	eration			0.48	0.14	0.07	(1.57-0.48)-0.71
	Sec	tion Tot	al						-	-	0.11	-0.02
L							1					

Designing the Duct System Example: Static Regain, SI

Example Stat	ic Regain Spr	readsheet S	I										
Air Temperatur	e, °C		21	Relative Humidity, %	0								
Elevation, m			1655	Air Density, kg/m³	0.983								
Barometric Pre	Barometric Pressures, Kpa		83	Viscosity (µ), Kg/m -s	1.82E-05								
						Air Quantity	Duct Size	t Cine	Duct Longth	Velocity	1.000	Total	Regain (Pa)
stream	ction			Fitting	Code	(L/s)	(mm)	Velocity (m/s)	(m)	Pressure, p _v (Pa)	Coefficient, C	Pressure Loss (Pa)	$[p_{v1} - p_{v2}] - \Delta p_t$
2	11d*	Tee, 45° Enti	ee, 45° Entry, Main: 4th iteration SD5-12 3492 559 14.2				0.14						
										99.00	0.14	13.86	
Section Total												23.16	27.84
	Λ	Duct			CD11-1				3.4			11.7	
2	11e	ree, 45° Enti	ry, Main:	5th iteration	SD5-12	3492	533	15.7			0.14		
										120.00	0.14	16.80	
Section Total								1.50					

Example: Static Regain

1-1-									
Static Regain Design									
Path to									
Terminal									
Box	TP (in. wg)	Excess Pressure (in. wg)	% Deviation						
_									
(4/5)	1.16	0.00	0.0%						
(7)	1.12	0.04	3.9%						
(9/10)	1.09	0.07	6.1%						
(13/14)	1.16	0.00	0.1%						
(17/18)	1.06	0.11	9.3%						
(20)	1.04	0.13	11.1%						

Average % Deviation

Critical Paths

SL

	Static Regain Design									
Terminal										
Box	TP (Pa)	Excess Pressure (Pa))	% Deviation							
(4/5)	295	4	1.4%							
(1)-21	235		11170							
(7)	279	20	6.6%							
(9/10)	280	19	6.3%							
(13/14)	299	0	0.0%							
(17/18)	274	25	8.4%							
(20)	232	67	22.5%							

amcainternational

Designing the Duct System

Critical Paths and Excess Pressure

Critical Paths and Excess Pressure Static Regain vs Equal Friction

Unbalance I-P						
	Static Regain Design					
Path to						
Box	TP (in. wg)	Excess Pressure (in. wg)	% Deviation			
(4/5)	1.16	0.00	0.0%			
(7)	1.12	0.04	3.9%			
(9/10)	1.09	0.07	6.1%			
(13/14)	1.16	0.00	0.1%			
(17/18)	1.06	0.11	9.3%			
(20)	1.00	0.13	11.1%			

Average % Deviation 5.1%

Unbalance I-P:

Equal Friction					
Excess					
Path to		Pressure (in.			
Terminal Box	TP (in. wg)	wg)	% Deviation		
(4/5)	1.28	0.02	1.3%		
(7)	1.27	0.03	2.1%		
(9/10)	1.30	0.00	0.0%		
(13/14)	1.26	0.04	3.1%		
(17/18)	1.20	0.09	7.1%		
(20)	1.15	0.14	11.1%		

Critical Paths and Excess Pressure Static Regain vs Equal Friction

Unbalance SI					
Static Regain Design					
Terminal Box	TP (Pa)	Excess Pressure (Pa))	% Deviation		
(4/5)	295	4	1.4%		
(7)	279	20	6.6%		
(9/10)	280	19	6.3%		
(13/14)	299	0	0.0%		
(17/18)	274	25	8.4%		
(20)	232	67	22.5%		

Average % Deviation 7.5%

Unbalance SI:

Equal Friction						
Path to		Excess				
Terminal Box	TP (Pa)	Pressure (Pa)	% Deviation			
(4/5)	330	37	10.2%			
(7)	314	54	14.6%			
(*/		31	111070			
(9/10)	322	45	12.2%			
(13/14)	367	0	0.0%			
(17/18)	346	21	5.8%			
(20)	310	57	15.7%			

Total Pressure Method Comparison with Static Regain

	I-P				SI				
	Stati	c Regain Design	Total Pressure Design			Static Regain Design		Total Pressure Design	
Section	ΔP _t (in wg)	Size (inch)	ΔP _t (in wg)	Size (inch)	Section	ΔPt (Pa)	Size (mm)	Pt (in wg)	Size (inch)
1	0.0	20 x 27 to 25 Transition	0.00	20 x 27 to 25 Transition	1	0.0	685 x 508 x610 Transition	0.0	20 x 27 to 25 Transition
2	0.19	25	0.19	25	2	49.1	625	49.1	625
3	0.37	20	0.37	20	3	93.6	483	93.6	483
4 & 5 T	0.61	10	0.61	10	4 & 5 T	152.3	254	152.3	254
6	0.04	16	0.04	16	6	9.5	406	9.5	406
7 T	0.53	9	0.53	9	7 T	127.2	229	127.2	229
8	0.03	14	0.03	14	8	6.6	356	6.6	356
9 &10 T	0.48	8	0.48	8	9 &10 T	121.4	203	121.4	203
11	0.10	22	0.11	22	11	28.5	559	27.2	559
12	0.26	21	0.31	20	12	64.6	533	75.7	533
13 & 14 T	0.62	14	0.55	14	13 & 14 T	133.2	356	142.2	356
15	0.10	17	0.11	17	15	24.2	432	24.2	432
16	0.11	17	0.11	17	16	33.6	432	33.6	432
17 & 18	0.56	12	0.56	12	17 & 18	138.4	305	148.6	305
19	0.15	9	0.25	8	19	37.1	229	76.9	203
20	0.49	8	0.46	8	20	92.84	229	105.5	229

amcainternational

Designing the Duct System

Total Pressure Method Comparison with Static Regain, I-P

I-P					
Static Regain Design					
Path to Terminal					
Box	TP (in. wg)	Excess Pressure (in. wg)	% Deviation		
(4/5)	1.16	0.00	0.0%		
(7)	1.12	0.04	3.9%		
(9/10)	1.09	0.07	6.1%		
(13/14)	1.16	0.00	0.1%		
(17/18)	1.06	0.11	9.3%		
(20)	1.04	0.13	11.1%		

Total Pressure Design					
Path to					
Terminal		Excess Pressure (in.			
Box	TP (in. wg)	wg)	% Deviation		
(4/5)	1.16	0.00	0.0%		
(7)	1.12	0.04	3.9%		
(9/10)	1.09	0.07	6.1%		
(13/14)	1.15	0.01	1.0%		
(17/18)	1.07	0.09	8.0%		
(20)	1.12	0.05	3.9%		

Average % Deviation 5.1%

Total Pressure Method Comparison with Static Regain, SI

7.5%

SI					
Static Regain Design					
Terminal Box	TP (Pa)	Excess Pressure (Pa))	% Deviation		
(4/5)	295	4	1.4%		
(7)	279	20	6.6%		
(9/10)	280	19	6.3%		
(13/14)	299	0	0.0%		
(17/18)	274	25	8.4%		
(20)	232	67	22.5%		

Average % Deviation

Average % Deviation 3.1%

Conclusion

- ✓ Equal Friction Designs May Not be Well Balanced
- Static Regain Designs Should be Better Balanced and for the Same First Section, Should Have a Lower Operating Cost than Equal Friction
- ✓ First Sections can be Sized to Meet Acoustical Objectives
- ✓ Efficient Fittings Should be Used in the Initial Design
- Smaller Duct Sizes or Less Efficient Fittings can be Used After the Initial Design to help Balance the non-design legs which should Lower First Cost... This is the Total Pressure Method of Design and can be Applied to Equal Friction or Static Regain Design.

Thank you for your time!

To receive PDH credit for today's program, you <u>must</u> complete the online evaluation, which will be sent via email 1 hour after the conclusion of this session.

PDH credits and participation certificates will be issued electronically within 30 days, once all attendance records are checked and online evaluations are received.

Attendees will receive an email at the address provided on your registration, listing the credit hours awarded and a link to a printable certificate of completion.

amcainternational

Questions?

NEXT PROGRAM

Join us for our next AMCA & O'Dell Associates Education Session:

- Tuesday, December 21
- 10:00-11:00am ET
- Topic: Stall Detection & Control in Commercial and Industrial Fans
- Presenter: Geoff Sheard, President, AGS Consulting

>> For additional session details please contact Sarah Johnson, Marketing Manager, O'Dell Associates (sjohnson@odellassoc.com)